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ABSTRACT

Set intersection algorithms between sorted lists are important in triangle counting, community detection 
in graph analysis, and in search engines where the intersection is computed between queries and 
inverted indexes. Many studies use GPU techniques for solving this intersection problem. The majority 
of these techniques focus on improving the level of parallelism by reducing redundant comparisons 
and distributing the workload among GPU threads. In this paper, we propose the GPU Test with Jumps 
(GTWJ) algorithm to compute the intersection between sorted lists using a new data structure. The 
idea of GTWJ is to group the data, of each sorted list, into a set of sequences. A sequence is identified 
by a key and is handled by a thread. Intersection is computed between sequences with the same key. 
This key allows skipping data packets in parallel if the keys do not match. A counter is used to avoid 
useless tests between cells of sequences with different lengths. Experiments on the data used in this 
filed show that GTWJ is better in terms of execution time and number of tests.
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INTRodUCTIoN

The calculation of the intersection between sets is an important operation in numerous application 
domains, such as information retrieval for text search engines, graph analytics for triangles counting 
and community detection and database systems. It serves to create indexes, especially inverted ones, 
by computing for every term, in the documents database, the set of documents in which it appears. 
Also, it allows search engines to find the responses to queries by computing their intersections with 
the global inverted index. Since 1971, when the first work has appeared, many techniques have been 
published in order to accelerate intersection time between sets, especially between sorted ones. At 
the basis, these techniques use well defined data structures and exploit hard components of machines. 
Logically, time execution depends on the manner by which the comparisons between the elements of 
the entries are done. In this context, three approaches are adopted to this end:

• Accelerate sequential processing time using data structures that are well adapted to requirements;
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• Exploit graphics processors (GPUs) and multi-core processors (CPUs) to exploit advantage of 
the parallelism they offer; or

• Exploit new plate-forms or frameworks, like map-reduce, for distributing the workload.

Since current machines are equipped with GPU cards that can easily be integrated into them and 
since they offer a high-level parallel environment at low cost. We propose a new GTWJ (GPU Test 
With Jumps) algorithm for calculating the intersection between sorted lists. The objectives of our 
proposition are multiple. Our first objective is to reduce the number of tests by avoiding comparing 
parts that will not necessarily be shared between the lists in the inputs. To achieve this objective, we 
modify the structure of the lists to be compared in order to avoid these unnecessary tests. Our second 
objective is to exploit the parallelism of the graphics card to speed up calculation times by reducing 
redundant comparisons and distributing the workload evenly among GPU threads. Thus, we have 
implemented our solution with the CUDA language which provides direct access to the graphics 
processor programming. This programming language has a complete instruction set, such as double 
precision calculation, and allows thousands of threads to be simultaneously used. This solution is 
compared to other solutions (Hwang & Lin, 1971; Demaine et al., 2001; Inoue et al., 2014). We 
present and comment these solutions in this paper.

The rest of the article is structured as follows. Section 2 provides related works; so, a state of 
the art is given here, it covers the set of algorithms which are published since 1971. We extend this 
section by presenting some research papers which applied intersection between lists to other fields. 
In section 3, we present three important algorithms, as we will compare our proposition with them. 
Section 4 gives details of our solution. Experiments are presented and commented in section 5. 
Section 6 concludes this paper.

Related work
The intersection between lists is widely studied because of its importance in several areas, such as 
the creation of indexes in search engines and the detection of frequent patterns. The first work, which 
treated the intersection between two sorted lists was published in the year 1971 (Hwang & Lin, 1971). 
Authors proposed a linear algorithm for merging two ordered lists. They propose that if the lengths 
of the two lists to be compared are relatively equal, a linear comparison would be an excellent way 
to merge the two entries. If the difference between the two lengths is large, then the use of other 
methods, such as dichotomy (called also binary search) or interpolation, to locate the elements of the 
small list in the large one speeds up the merging process. This same work was updated in (Hwang 
& Lin, 1972). Authors conclude that for two sorted lists A et B where n1 and n2 are their lengths, 
respectively, with n1≤n2, the complexity for computing the intersection is O(n1+n2). So, if n1=n2=n 
then time complexity is O(2n). It is judicious to see that, exactly (n1+n2-1) operations are executed. 
Brown and Tarjan (1979) used an AVL tree to determine the intersection with the same complexity of 
(Hwang & Lin, 1972). Pugh (1990a) has proposed the use of skiplists to represent the data in memory 
and for the calculation of the intersection. These skiplists allow to avoid testing of non-shared parts. 
In this paper, only an average number of comparisons is given in the merging algorithm. Authors 
of (Demaine et al., 2000) studied the sets intersection, union and difference. They presented a study 
on a framework about optimization. A set of adaptive algorithms is given for calculating the three 
operations. These same authors have proven that their algorithms, according to a certain parameter α, 
are efficient. The study was applied essentially on balanced B-trees. This paper presented especially 
the algorithm adaptive which was compared to SvS (for Small vs Small) in (Demaine et al., 2001). 
SvS is very useful for extremely large data like in search systems. The details of SvS will be given 
in the next section. Author of (Barbay & Kenyon, 2002) have shown that the algorithm adaptive of 
(Demaine et al., 2000) is optimal and extended the work by giving a new algorithm with threshold for 
calculating the intersection of several lists in parallel. Exactly, for k sorted lists of the entry, authors 
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studied the problem for detecting the elements which belong to t sets from k, with t ≤k. This problem 
is called t-Threshold Problem. A bound of this problem is given.

Bentley and Yao (1976) has studied the intersection of two sets in the context of unbounded 
searching problem or in other words the problem of searching an ordered table of infinite size. Authors 
studied the complexity of many algorithms. They have begun by presenting the Unary Search (B0) 
algorithm and its complexity. This algorithm is called as a subroutine in the Binary Search (B1) and 
by recursion, they built the k-nested Binary Search (KBS or Bk). However, the complexity of this 
last algorithm can be too high. In order to remedy to this problem, authors propose the Ultimate 
algorithm whose objective is to choose appropriate values of k. This work is also called Galloping 
algorithm (Vladimir, 2013) as for locating an element of B, the binary search returns either it or its 
position in A. We must note that (Hwang & Lin, 1972) was the first work which has proposed the 
use of the binary search. It is important to see that the binary search is well only for n1 too less than 
n2 (Zekri et al., 2018).

Inspired by (Bentley & Yao, 1976) and by (Hwang & Lin, 1972), Beaza (Baeza-Yates, 2004) 
has introduced a new algorithm for calculating the intersection between two ordered sets. This work 
is called the double binary search, it can be seen as a balanced version of Hwang and Lin’s (Hwang 
& Lin, 1972). For some conditions, this algorithm has a good average case of complexity. Baeza-
Yates (2004) suppose two lists A and B where the difference between their two lengths is significant. 
Recursively, using the dichotomy, (Baeza-Yates, 2004) calculates the median of A and tries to locate it 
in B, using the dichotomy as well. If this value is found so it will be inserted in the shared set else the 
theoretical position L of this median is returned. If L > n1 than the execution is stopped. This situation 
is the best case that can happen. If L < n1 then the algorithm will continue. The computing of the 
median divides A into two subsets. The median of every part will be recursively binary searched in a 
corresponded part of A, which is also divided into two parts. The algorithm computes at every time 
which part is smaller and inverses the searching process. The algorithm ends when a subset is empty.

Even if this algorithm is efficient, but not necessarily rapid, it cannot be used for computing the 
intersection of more than two ordered sets as the intersection result is not sorted (Zekri et al., 2018). In 
other words, if we want to computed the intersection between k ordered sets s1, s2, .., sk, with |s1| ≤|s2| 
≤... ≤|sk| any algorithm like SvS (Demaine et al., 2001; Barbay et al., 2006) begins by computing the 
intersection between s1, s2 . The result R is always sorted. At every time, the intersection is computed 
by R and the next Si (with 3 ≤i ≤k) and is R updated. So, there is no need to apply a sorting procedure 
on R. This computation will take more time if (Baeza-Yates, 2004) is applied as R is not ordered.

Baeza-Yates et Salinger in (Baeza-Yates & Salinger, 2005, 2010) have performed experiments 
to compare (Baeza-Yates, 2004) with the Adaptive algorithm (Demaine et al., 2000, 2001). They 
showed that if the size A is too small compared to the size B then the dichotomy is an effective way 
to calculate this intersection. With well values for the length of the smallest set, the algorithm of 
(Baeza-Yates, 2004) can do better performances than Adaptive algorithm, however, in the information 
retrieval domain, it is not possible to impose entries with prescribed lengths. In the Experiments in 
(Zekri et al., 2018) showed that globally SvS make better performances. Bill et al. (2007) have used 
the word memory as the unit of representation of information. They perform a pre-processing to 
write the lists in RAM. Using a well-defined hash function, this one was defined initially in (Carter 
et al., 1978), authors calculate the intersection between two lists. The question in (Carter et al., 1978) 
was to find a manner for compute the space for representing a set. So (Bill et al., 2007) has took full 
advantage of this idea as it allows to test bucket of bits in one time. Tsirogiannis et al. (2009) have 
proposed a partitioning of the input in order to make a load balancing on a multi-core architecture. 
This work has presented three algorithms for computing the intersection of sorted and unsorted lists. 
for doing this, authors use a cache-resident micro-index and a hash function.

Tatikonda et al. (2009) have used the multi-core architecture to compute the intersection between 
lists. As new machines are equipped by many cores, authors exploit the communication via cache-
memories, for accelerating the intersection computation of posting lists. To do this, the posting lists 
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are presented by skiplists and stored by using the PFordelta compression scheme (Zukowski et al., 
2006) as skiplists (Pugh, 1990b). The objective of authors of (Ao et al., 2011) was to manage the heavy 
workload in search engines as they process thousands of queries per second. They implement a binary 
search algorithm on GPU. They couple linear regression and hash segmentation techniques on GPU.

Ding et al. (2008) proposed a hierarchical representation in memory where they couple hashing 
with sorting to detect the intersection. The result depends largely on the bit representation of the 
memory words. Schlegel et al. (2011) used the STTNI (STring and Text processing New Instruction) 
instructions defined in the Intel SSE 4.2 processor. The intersection is calculated according to the 
SIMD model on this processor. Their experiments showed that the comparison of two arrays in 8-bit 
blocks was the best way to achieve high performance. Inoue et al. (2014) proposed a Framework that 
runs on the base of the SIMD model to minimize the bad connections caused by the test operation. The 
execution of the test program was controlled at the bottom of the machine. It is a question of checking 
the progress of the program’s ordinal counter. The authors proposed a prediction by advancing several 
pointers at once. Lemire et al. (2016) proposed the GALLOPING algorithm which, based on the 
SIMD model, compares 4 pairs of integers represented in 32-bits. This algorithm depends largely on 
the architecture of the processor on which it is running. GALLOPING can compare lists of unequal 
lengths. Otherwise, they use another algorithm of the SIMD type for intersection detection. Zhou 
et al. (2016) proposed an efficient Framework that runs on the GPU where the authors perform an 
intense process based on the SIMD model that produces an index for a search engine. The authors 
also proposed a binary hash function to represent the terms.

Fort et al. (2017) proposed a parallel algorithm on the GPU to calculate the intersection between 
two large families of small lists. They eliminated repeated and empty lists. The problem of list 
intersection can be encountered in many other fields like detection of communities in large graphs. 
For example, the computation of the clustering coefficient is based on the detection the detection of 
triangles as the problem is to define if the neighbor of my neighbor is my neighbor; see (Schank, & 
Wagner, 2005) for such work. The intersection detection was an important problem of the algorithms 
forward and edge listing (Latapy, 2008; Alon & Michael,1978). By using bitmaps for filtering out 
unmatched elements, (Zhang et al., 2020) presents FESIA for searching intersection between small 
sets. Authors use the SIMD model on modern CPUs.

All these paper deal with le set intersection problem; some of them work on CPU and others on 
GPU. Some paper use trees and other papers put assign the arrays directly in the memory. The major 
problem is for us that if we could propose an index so the computing process will be fast. This paper 
is not about a survey, where we have to give more details about the weaknesses of any cited paper 
especially since the number of pages is limited, but it is planned in our future works. We propose a 
new index and a new algorithm which exploits the index in order to compute the intersection in a fast 
way. More of this, we have compared our work to other works according to number of tests which 
the important parameter in the intersection computing process; this comparison has not done before.

Main algorithms
This section presents the set of algorithms that we have compared with our solution. We begin by 
presenting the naive algorithm which is the first algorithm in the field of computing the intersection 
between ordered sets. SvS algorithm computes the intersection by using the binary search. The 
parallel algorithm is the third algorithm presented in this section. It has implemented an extended 
SIMD version of the naive algorithm on GPU.

Scalar Naive Algorithm
The scalar algorithm is the simplest algorithm to search intersections between ordered sets. We refer 
here by the term ’naive’. It was proposed by (Hwang & Lin, 1971, 1972). It takes as input two sorted 
tables and returns the common elements between them. It has been proven that its best case is when 
both input tables are of the same sizes (Inoue et al., 2014; Zekri et al., 2018). Another advantage of this 
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algorithm is that it works well with inputs that are compressed with several algorithms such as delta 
encoding, because of its simplicity (Demaine et al., 2000). If the sizes of the inputs are different, the 
naive algorithm is less efficient and many techniques have been proposed to improve its performance. 
For example, algorithms based on binary search (Demaine et al., 2000; Sanders & Transier, 2007) 
reduce the number of comparisons and memory access by selecting values from the smallest set to 
locate them in the largest set. Similarly, hash-based techniques (Baeza-Yates & Salinger, 2005; Ding 
et al., 2008) or techniques using hierarchical data representations (Baeza-Yates & Salinger, 2005) 
improve performance by reducing the number of comparisons. However, most of these techniques 
are effective only when the sizes of the two input sets are significantly different (Inoue et al., 2014).

Figure1 presents an example of the naive algorithm. At every time for the two set A and B, naive 
compares the actual cells. If they are equal, naive marks the intersection else it increments the pointer 
of the smallest cellule. This process is repeated until one of the lengths is reached. Algorithm 1 gives 
the pseudo-code of naive.

The worst number of comparisons for the intersection of the two sorted sets of length sizeA and 
sizeB is exactly equal to (sizeA +sizeB-1). So its complexity is O(sizeA + sizeB). In this case, the sets 
do not have common values. The best case requires Min (sizeA, sizeB) comparisons.
Algorithm 1: Scalar_Intersection (int [] A, int [] B, int [] C) {
int cp = 0, i = 0, j = 0;
While (i < size

A
 && j < size

B
) {

if (A[i] == B[j]){
C [cp++] = A[i];
i++; j++;
}
else if (A[i] > B[j])
j++;
else
i++;}
return C;}

SvS Algorithm
SvS (Small versus Small) (Demaine et al., 2001; Barbay et al., 2006) is a simple and direct algorithm 
widely used for the calculation of the intersection between k sets, with |set[0]| ≤|set[1]| ≤... ≤|set[k 
− 1]|. The lists, which form at the input of SvS, are positioned in ascending order according to their 
lengths. SvS compares the lists with the shortest sizes, the result will be compared with the following 
list according to its positioning. The first smaller list is considered as a candidate list. SvS tries to 
locate its elements in the following list. Each time, it considers an element of the candidate list and 
performs a binary search to locate it in the other list. If the search is not successful, then it is deleted 
from the candidate list. During its entire execution, SvS saves the position ℓ of the element being 
located to continue the search from this position. SvS stops when the candidate list is empty or if it 
exhausts the k lists. It is important to note that all intersections are always sorted.

Figure 1. Example of Naive algorithm (Inoue et al., 2014)
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Figure 2 presents an example of SvS execution. The small list is considered a candidate list. 
SvS points to the first cells of the two lists, and tries to locate the content of the actual candidate 
cell in the longest list. If the intersection is a success then SvS increments the actual cells’ counters, 
like in the step (a) of Figure 2. If the cells do not match then SvS increments the counter of the cell 
with the smallest content. In step (b) of Figure 2, the incrementing is performed till encountering a 
cell with content equal or greater to the candidate content. Having reached the cell number 4 with 
content grater then 6, SvS deletes this last one. The new candidate cell is with a content less than 9, 
so it is deleted. The new candidate cell is greater than the fourth cell of the longest list; so, SvS will 
increment the counter of this one and stops with the sixth cell which content is equal to the candidate 
cell. Algorithm 2 gives the pseudo code of SvS.

Demaine et al., (2000) considered the Swapping SvS variant, where the searched element is 
chosen from the set containing fewer remaining elements, instead of the first set (initially the smallest) 
defined in SvS. The problem is that the result list is not necessarily sorted, unlike the result of SvS 
which always sorted. So, if we would run this variant over several lists, it will be necessary to add a 
sorting procedure. This addition could increase the time of overall execution.
Algorithm 2: SvS_Intersection (set, k)
Sort the sets by size (|set[0]| ≤|set[1]| ≤. . . ≤|set[k-1]|).
Let the smallest set set[0] be the candidate answer set.
for each set S from set do initialize ℓ[S] = 0.
for each set S from set do
for each element e in the candidate answer set
do
binary search for e in S in the range ℓ[S] to |S|, and update ℓ[S] 
to the rank of e in S.
if e was not found then
remove e from candidate answer set, and advance e to the next 
element in the answer set.
end if
end for
end for

Parallel Algorithm
The main objective of Inoue (Inoue et al., 2014) is to reduce the branch mispredictions as they 
cause difficult jumps. In other word, authors want to reduce the number of costly hard-to-predict 
conditional branches. The technique is to advance pointer by more than one element at a time. The 

Figure 2. Example of the SvS algorithm
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key for the authors is to use comparisons by blocks. Technically, (Inoue et al., 2014) Hwang &amp 
(Hwang & Lin, 1971)has extended the scalar fusion algorithm by comparing several values from 
each input table. They call the number of elements compared at the same time, the block (S). We 
refer to this algorithm in the name of its author (Inoue). If the total number of elements in an input 
table is not a multiple of the size of the S block, we can simply return to the naive approach for the 
other elements. Inoue et al. (2014) predicted that if the size of the block is equal to 4 then their scalar 
algorithm presents its best performance. Also, it predicates that if the size of the larger array sizeB 
is more than twice the size of the smaller array sizeA, S = 3 is the best if the two input arrays have 
the same size. They used the SIMD instructions with a block of multiples of 4. They assumed that 
the number of output elements is much smaller than the number of input elements, and the size of 
the input sets are not significantly different.

Figure 3 shows an example of how this algorithm works on two sets with S=2. In step (a), Inoue 
compares all combinations of cells and advances the pointer for the array with the smaller value, 
as it is shown in instruction (b). The algorithm compares the cells of the precedent block by those 
new cells. Also, in step (c), Inoue performs all comparisons; and continue to increase the pointer of 
the block with small values until finding a match. In some cases, some comparisons are avoided as 
implicitly, some cells of the second array are greater than some cells of the first array. The problem, 
these cases bust be implemented. So, more time will be spent for avoiding these tests.
Algorithm 3: Inoue_Intersection (int [] A, int [] B, int [] C) {
int Cpos = 0;
while (1) {
int Adat0 = A[Apos]; int Adat1 = A[Apos + 1];
int Bdat0 = B[Bpos]; int Bdat1 = B[Bpos + 1];
if (Adat0 == Bdat0) {
C[Cpos++] = Adat0;
}
else if (Adat0 == Bdat1) {
C[Cpos++] = Adat0;
Goto advanceB;
}
else if (Adat1 == Bdat0) {

Figure 3. Example of the Inoue algorithm sequence (S = 2) (Inoue et al., 2014)
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C[Cpos++] = Adat1;
goto advanceA;
}
if (Adat1 == Bdat1) {
C[Cpos++] = Adat1;
goto advanceAB;
}
else if (Adat1 > Bdat1) goto advanceB;
else goto advanceA;
advanceA:
Apos+=2;
if (Apos >= Aend) { break; } else { continue; }
advanceB:
Bpos+=2;
if (Bpos >= Bend) { break; } else { continue; }
advanceAB:
Apos+=2; Bpos+=2;
if (Apos >= Aend || Bpos >= Bend) {break;}
return C;
}

Contribution
We propose a solution which minimizes the number of comparisons made as much as possible. This 
minimization leads to a rapid restitution of intersection result. In order to accelerate the intersection 
computation, related works in section 2 have proposed many preprocessing techniques. The simplest 
one is to take in the input ordered sets. Our idea is to create a new structure for presenting the input 
in memory and to exploit it in a concise way (Zekri et al., 2018). In this structure we will divide the 
initial tables into fragments called sequences. Each sequence is preceded by two fields; the first one 
is an identifier of the sequence and the second is the number of elements contained in the sequence.

• SeqID: is the identifier of the sequence. It is the quotient of the Euclidean division of the current 
value of the table by the sequencing value.

• Nseq (the Number of cells): is the number of elements contained in a sequence. These fields 
will help to predict the number of elements to jump to the next sequence; hence the gain in the 
number of comparisons between elements of the two compared tables.

Creating Sequences
In information retrieval, indexes must be well constructed in order to extract information quickly and 
efficiently information. In our method, the sequences play the role of such index. The sequencing 
value is obtained in an experimental way and varies according to the distribution of values, in other 
words, it depends on the minimum and maximum values in the table. Each sequence contains all the 
values between (SeqID * sequencing value) and ((SeqID +1) * sequencing value).
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Figure 4 presents an example for a sequencing value equal to 100, the sequences are 0, 100, 200, 
300... etc. The first sequence has a SeqID equal to 0 and contains 4 numbers. The value 2 is equal 
to 0*100+2. The second SeqID is equal to 1 and contains two values. By the same calculus, 132 is 
equal to 1*100+32. Every sequence is obtained by applying Euclidean division by 100.

The flowchart of the Figure 5 presents the processing for producing the set SeqA which is 
deduced from the sorted input A. The cells SeqA[j] and SeqA[j+1] are SeqID and Nseq respectively. 
At every time, SeqA[j] receives the Euclidian division of A[i] by the sequencing value Val. In the 
experimentation section, we will give the best values of Val which can produce the best intersection 
computing times.

GTwJ Algorithm
The GTWJ (for GPU Test With Jump) algorithm takes as input two sorted lists A and B, and transforms 
them into two sequences SeqA and SeqB with a well-specified sequencing value and returns the 
common elements between them. The returned elements of the intersection set are themselves sorted. 
So, it is easily to search intersection between more than two sorted lists unlike (Baeza-Yates, 2004). 
The GTWJ algorithm processes sequences as elements of a sorted table and performs a search like 
the Naive algorithm between sequences in each table and between the elements of sequences with 
the same SeqID. We implemented the algorithm on a GPU card using CUDA C. The lists A and B 
are initially read by the CPU, transformed into sequences and then transferred to the GPU’s global 
memory. We have assigned for each sequence a thread that will compare the SeqIDs and look for 
common elements between the two sequences with the same SeqID (see Figure 6, Figure 7).

Figure 4. Example of sequences creation for an array of integers

Figure 5. Flowchart of preprocessing
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Each time, two SeqIDs are equal, the corresponding thread searches for the intersection between 
these two sequences. If the SeqID value of the first table is elevate than the SeqID of the second 
table, then the thread passes to the next sequence in the second table and compares it with the SeqID 
of current sequence, otherwise it ends. The algorithm ends when there are no more sequences in one 
of the two tables (see Figure 7).

Figure 8 shows an example of how GTWJ works. It will perform 11 comparisons between the 
elements and 9 comparisons between the SeqID (20 in all) and 15 avoided elements. Naive will 
perform 26 comparisons for the same inputs. The advantage of the GTWJ algorithm is that it has the 
ability to avoid sequences, such as sections: 3, 5, 6, 7, 8 and 9 and cases, as in both sections 0 and 1.

Figure 7. Flowchart of the GTWJ algorithm

Figure 6. Example of GTWJ (pre-processing and calculation on GPUs)
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The GTWJ algorithm is presented by the following pseudo code for two sets. The result is 
recorded in the variable C. We recall that C is always sorted.
Algorithm 4: GTWJ_Intersection (int [] SeqA, int [] SeqB, int [] 
C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
int j = 0; int cp = 0;
while(j < size

SeqB
){

if(SeqIDA
i
 == SeqIDB

j
)

{
while (i < NSeqA

i
 && j < NSeqB

j
)

{
if (SeqA[i] == SeqB[j]) {
C[cp++] = SeqA[i];
i++; j++;}
else if(SeqA[i] < SeqB[j]) {i++;}
else j++;
} //end while
else if (SeqIDA

i
 > SeqIDB

j
) {j = j+ NSeqB

j
;}

else break;
} //end while
return C;}

Naive executes (sizeA + sizeB) operations. Due to our tables composition, GTWJ would execute 
(sizeA +sizeB - NS) where NS is the number of avoided cells. The experiments presented in the next 
section will show the gains in terms of time execution and avoided cells.

experimental eVALUATIoN
The experiments were conducted on a machine equipped with an Intel® processor Core™ i7-5500U 
CPU @ 2.40 GHz, 8GB of RAM and a 2GB Nvidia GeForce 840M card. We use Visual Studio 2013 
software under Windows, Our CUDA code is compiled with the NVIDIA Compiler using CUDA 
version 8.0. We have implemented the GTWJ, Naive, SvS and Inoue algorithms on sorted sets 
generated in the same way as described by Baeza-Yates in (Baeza-Yates, 2004). We generate series 
of random integers uniformly distributed. We must note here, that the effectiveness of any solution 
is related with the correctness of the result. All the papers presented have used synthetic datasets like 
(Baeza-Yates, 2004) and natural numbers like (Lemire et al., 2016).

Like all works of this research field, we have compared the different algorithms on the time 
execution which is the major and important metric. We have also compared them on the number of 

Figure 8. Example of the GTWJ algorithm processing
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executed tests between cells as the time execution is directly related to this parameter. We will also 
show that our index allows us to jump useless parts.

The important works (Chen et al., 2013) and (Li et al., 2021) have used real datasets for proposing 
new solutions; authors have also proposed interesting frameworks for conducting statistical tests, in 
order to show efficient comparisons. In our future works, we will use these approaches for better 
comparisons; but the object of this research is to stay in the same logic of the works of this research 
field.

We recall that the input is always sorted, so the preprocessing time itself is not considered as it 
is presented in all papers of the related works, see for example (Ding et al., 2008).

Variation of the Sequence’s Size
In this section, we have varied the lengths of sequences in order to see their impacts on the intersection 
computing time. Also, we tried to find the sequence which gives the best computing time. These 
experiments concern GTWJ only. In the first time, we searched this sequence in the case of tables with 
equal sizes. In the second one, we tried to find it in the case where tables are with different lengths. 
In all experiments, we have considered the time execution, the number of tests and the number of 
skipped cells as metrics of comparison.

Tables with equal Sizes
In these experiments, we have taken 50000 as the size of these two tables. We have varied the sequence 
value from 100 to 10000. We have collected information about the three considered metrics. The 
best sequence will minimize the time execution and number of tests and maximize the number of 
skipped cells. The results of this experiment are presented in the Figure 9. Figure 9(a) shows that 
the more the sequencing value is higher, the more the execution time increases. This figure shows 
that the best sequencing values vary between 100 and 1000. Although 100 is the best choice. Figure 
9(b) justifies the result obtained in the previous figure; the appearance of the two graphs is similar. 
We then notice that when the sequences are too long, the comparison numbers increase. This figure 
confirms that 100 is the best sequencing value.

At the base, we had the idea that if we could jump some parts in the tables, we will get a rapid 
intersection computation. This is our main idea. The results illustrated in Figure 9(c) are exactly what 
we want to have. This Figure 9(c) shows that the number of skipped cells is inversely proportional 
to the size of the sequence. The more the sequence increases, the fewer cells are skipped. This 
finding is logic as when the sequence is long it means that we get closer to the naive method where 
all the elements are scanned. It is like comparing tables without any preprocessing as the number of 
sequences becomes small. Like Figure 9(b), Figure 9(c) confirms that for a sequence equal to 100 
gives the highest number of skipped cells.

Figure 9. (a) Execution time by varying the sequence for tables with equal sizes, (b) Number of tests by varying the sequence for 
tables with equal sizes, (c) Number of skipped cells by varying the sequence for tables with equal sizes
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Tables with different Sizes
In this case, we have taken 1000 as the size of the first table and 100000 as the size of the second 
one. We tried to locate the smaller table in the biggest one as explained above. By conducting the 
same experiment, we have found similar results as shown in Figure 10. GTWJ gives the best results 
when the sequences are small even for tables with different sizes. Figure 10(a) shows that the interval 
[100, 500] gives the best results.

Figure 10(b) confirms the same result obtained in Figure 9(b). In these experiments, the number 
of comparisons grows when the size grows. This is logical as when the size grows the situation is 
like when we apply naive comparisons by scanning all tables. This is the contrary of what we want 
to do. Figure 10(b) confirms that, for small sequence, more parts of the entries are jumped and for a 
size equal to 100, the smallest number of comparisons is obtained.

Figure 10(c) shows that indeed for small sequences, GTWJ would perform more jumps; this result 
is logical as when sequences are long more cells will be compared but for smallest sequence more parts 
of the compared tables will be jumped. The idea behind GTWJ is to divide for more jumped parts.

In the following part, we will present the comparing results between Naive, Inoue, SvS and 
GTWJ algorithms. For this latter, we have executed it with four versions GTWJ100, GTWJ1000, 
GTWJ5000 and GTWJ10000 according to the sizes of sequences. The objective is to conðrm the 
results of the precedent experiments.

Comparison of Algorithms on Tables with equal Sizes
In these series of comparisons, we have varied the sizes of the input tables from 1000 to 50000. The 
results of these experiments are shown on Figure 11(a) and, as the gap between the time executions 
of the algorithms, we have zoomed the results on Figure 11(b). This zoom concerns the results of 
GTWJ only.

Figure 11(a) shows that SvS has consumed more time than the rest of algorithms. Its problem 
resides in the logic it has adopted for computing the intersection. SvS proposes the use of a repetitive 
binary search for locating the elements. The process of filling and unstacking from the stack takes a lot 
of time. This technique is not good for tables with equal sizes. SvS does not apply any preprocessing 
on the entries so it will scan all entries. This figure shows also that Naive is better than SvS in terms 
of time execution as it makes a directed growing scan unlike the case of using binary search. We can 
see also that Inoue has made a better performance as it was initially adapted for GPU. We have chosen 
the better configuration for Inoue as we have taken bloc sizes s=4 (Inoue et al., 2014). The excess 
time is due to the supplementary instructions as it performs all possible comparisons in each block. 
Figure 11(a) shows also that GTWJ, executed with different sequence sizes, has presented better times.

Figure 11(b) gives the different execution times obtained by the different GTWJ variants. This 
figure confirms the results obtained on Figure 9(a), Figure 9(b) and Figure 9(c). We can see that 
GTWJ10000 has consumed a long time. This is clear as when sequences are too long, the computing 

Figure 10. (a) Execution times by varying the sequence for tables with different sizes, (b) Number of comparisons by varying the 
sequence for tables with different sizes, (c) Cells jumped by varying the sequence for tables with different sizes
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seems like the naive algorithm. This remark is also correct for GTWJ1000 which has been faster 
than GTWJ5000 as a confimation of precedent results. Finally, GTWJ100 was the fastest among 
all algorithms. For sequence size equal to 100, the computing of the intersection as the threads can 
manipulate consecutively a lot of small parts which can be processed quickly.

Figure 12(a) depicts the number of comparisons performed in the executions of these seven 
algorithms. Figure 12(a) shows only the curves of SvS, Naive, GTWJ1000 and GTWJ100 algorithms 
as the results of the algorithms have presented nearly the same results, which was surprising as shown 
on Figure 12(b).

On Figure 12(a), we can see that SvS makes more comparisons than the rest of algorithms. 
The use of the binary search increases this number, as this method will test the cells many times for 
comparing it with the actual cell of the first table. This figure shows GTWJ1000 is better than SvS 
in terms of number of comparisons. We can also see that for sizes greater than 10000, GTWJ1000 
has performed a smaller number of comparisons than GTWJ10000, GTWJ5000 and Inoue.

In this same context of comparison, Figure 12(a) confirms that for size equal to 100, GTWJ has 
made a smaller number of comparisons comparatively to other algorithms. This small number is due 
to the decomposition as when the sequence size is small. We will have more and more sequences 
which can increase the probability to have more different sequences, which can help our algorithms 
to jump these parts. The tables’ constructions explained above helps a lot for jumping more parts 
(sequences and cells).

Figure 12. (a) Number of comparisons for tables with equal size, (b) The hidden results of Figure 12(a)

Figure 11. (a) Execution time for tables with equal sizes, (b) Zoom on Figure 11(a)
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Comparison According to Tables with different Sizes
In this experiment, we set the size of the second table at 50,000 and we varied the size of the ðrst table 
from 1000 to 10000. We also set the GTWJ sequencing value to 100. The results of these experiments 
are illustrated in Figure 13(a).

This figure shows that SvS has consumed more time compared to the other algorithms. The Naive 
algorithm also consumes a high amount of time compared to Inoue. These three algorithms test all 
tables’ elements. SvS is always penalized by the implementation of the binary search. Like Figure 
11(a), Inoue is in the third place in terms of execution time consumption. As we can see, GTWJ100 
was faster than the others because it manages to skip many sequences from which it performs fewer 
tests according to what we have already advanced in this part of experiments.

Figure 13(b) shows that SvS, Naive and Inoue algorithms have touched all the cases of both 
tables, which increase their execution times. This figure shows that GTWJ100 has made less number 
of comparisons; this is explained by the preprocessing of the entries as it can jump cells and parts 
according to Nseq, the number of cells contained in a sequence, and SeqID as GTWJ can avoid testing 
completely sequences if their SeqId’s do not match. These results join with the experiments shown 
in this section. This reduced number of comparisons results is induced by the reduced number of 
execution times as shown in Figure 13(a).

Comparison Between TwJ50 and TwJ100
As we have searched for the best sequence size in the first experiments (see the figures 9 and 11), 
we have tried to look if for sequence’s size smaller than 100, we could have better performances for 
GTWJ. In this context, we have executed GTWJ with the sizes 100 and 50 and we have collected the 
execution times. Figure 14 shows the performances of these to variants while Figure 15 gives the 
gap in time between GTWJ50 and GTWJ100.

Figure 13. (a) Execution time by varying the size of the first table, (b) Number of comparisons by varying the size of the first table

Figure 14. Comparison between GTWJ50 and GTWJ100
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Figure 14 shows that GTWJ50 was faster than GTWJ100 for tables with sizes smaller than 5000 
while for higher sizes, GTWJ100 has presented better times than GTWJ50. But the gap in time of 
Figure 15 was not so large between GTWJ50 and GTWJ100 as the highest gap has reached only 1.34 
microseconds, but for large sizes, the gap between GTWJ100 and GTWJ50 was too high. We can 
conclude here, that for 100 as sequences size is so interesting and is sufficient to having good results.

execution Time According to the Number of Threads for Tables of equal Sizes
In the experiments which concern the variation of the number of threads for looking at its impact on 
executions’ times, we have fixed the entries’ sizes to 50000. The results are presented on Figure 16.

We can see on Figure 16(a) that the increase in the number of threads has made Naive and SvS 
faster; but Naive has given better performances than SvS. It appears that SvS is not suitable for such 
cards; we think the execution of SvS on CPU is well for it. This figure shows that Naive and SvS 
have consumed more times than Inoue and GTWJ100.

Figure 16(b), which is a zoom on Figure 16(a), gives the executions’ times of Inoue and GTWJ100. 
It is clear that Inoue has been faster when the number of threads has been increased. Its better time 
was reached for 1000 threads. We can also see that globally the number of Threads has not a high 
impact on the GTWJ100; its execution times were not high. GTWJ100 has presented best performances 
for 26, 32 and 512 threads. For us, GTWJ100 is more impacted by the tables’ construction than by 
the increase in the number of threads, as for a high number of sequences, it will be possible to jump 
more and more parts in the entries.

Figure 16(c) illustrates the accumulated execution times of these four algorithms. This figure 
shows that SvS has not presented good performances even though the number of threads has increased 
but Naive can give better performances when the number of threads increases. This figure shows 
that Inoue is better than precedent algorithms as it was initially presented to be executed on GPU 

Figure 16. (a) Execution time by varying the number of threads for tables of equal sizes, (b) Execution times of GTWJ100 and 
Inoue for equal sizes, (c) Accumulated execution times by varying the number of threads for tables with equal sizes

Figure 15. Comparison between GTWJ50 and GTWJ100
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cards. Our proposal has presented better performances and has been constant in its execution time. 
The preprocessing is its key of success as it is possible to avoid testing larger parts of the entries.

execution Time According to the Number of Threads for Tables of different Sizes
As the GPU offers a high parallelism but defining a high number of threads, a high-performance 
computing method will explore efficiently these threads in order to speed up calculations. In this 
context, we have varied the number of threads in order to see if there is a configuration which can 
lead to quick computing.

In this objective, we have conducted intensive experiments on GTWJ100, Naive, Inoue and SvS 
algorithms as shown on Figure 17(a) and Figure 17(b). For tables with different sizes, we have varied 
the number of threads Nb_threads per bloc and fixed the size of the first table to 10000 and 50000 
as the size of the second one. We tried to locate the elements of the first table into the second one. 
The experiments results are presented on Figure 17(a). We can see that the increase in the number of 
threads has accelerated the execution of Naive and SvS, but their execution times have remained high 
comparatively to Inoue and GTWJ100. The best execution time has been obtained for 512 threads 
per bloc while for 256 threads per bloc SvS has presented its best performance.

Figure 17(b) gives the results of GTWJ100 and Inoue. We can see that for all variations GTWJ100 
has been faster than Inoue. More of this the best number of threads that helps GTWJ100 to be faster 
is 16 threads per bloc, where GTWj100’s execution time has reached 6.33 microseconds. Globally 
for 16, 128 and 512 threads per bloc, GTWJ100 was very fast.

Figure 17(c) gives the accumulated execution times obtained in precedent figures. This figure 
shows that Naive and SvS were slow in terms of execution times. It is important to know that these 
two algorithms were not proposed in their first propositions to be implemented on such support of 
parallelism. This figure demonstrates that GTWJ100 was the fastest algorithm even if Inoue has also 
been fast. This one was proposed to be executed on GPU cards and for comparison bloc S=4 it has 
presented its best performances. We must report the high gap executions’ times of GTWJ100 and 
Inoue, in one part, and Naive and SvS executions’ times, in another part, despite if Figure 17(c) shows 
that their execution times are near. A zoom on this figure will show this high gap.

Conclusion
The processing of data in search engines passes by the construction of indexes. These ones are obtained 
by computing intersections by the crawled documents while the processing of queries passes by 
computing intersections between them and the indexes. The problem of intersection computation of 
sorted sets as attracted high intention. In this paper, we have presented a new solution for computing 
it on GPU cards as theses ones offer high parallelism.

Figure 17. (a) Execution time by varying the number of threads for tables with different sizes, (b) Execution times performed by 
GTWJ100 and Inoue, (c) Accumulated execution times by varying the number of threads for tables with different sizes
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For computing the intersection by two sorted lists, we have proposed to reconstruct them into 
sequences and to count the number of cells into every sequence. These two parameters are sufficient 
to avoid unnecessary testing of cells. We have implemented our algorithm on graphics processor 
under the CUDA architecture. We have also presented a large of the state of the art. In order to show 
the efficiency of our proposal, we have compared it with three other algorithms. The experiments 
are based on synthetic data. We have taken the response times and the number of comparisons 
as comparison metrics. These experiments showed that our solution performed better than other 
algorithms. Currently, we are extending it for the calculation of inverted indexes.
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